Code: 20ES1305

II B.Tech - I Semester – Regular/Supplementary Examinations DECEMBER 2022

DATA STRUCTURES

(Common for CSE, IT)

Duration: 3 hours Max. Marks: 70

Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

BL – Blooms Level CO – Course Outcome

			BL	СО	Max. Marks	
		UNIT-I				
1	a)	What do you mean by complexity of an	L2	CO1	7 M	
		algorithm? Explain the meaning of worst				
		case analysis and best case analysis with an				
		example.				
	b)	Describe insertion sort with a proper	L3	CO2	7 M	
		algorithm. What is the complexity of				
		insertion sort in the worst case?				
OR						
2	a)	Explain recursion. Write a recursive	L2	CO1	7 M	
		algorithm to calculate factorial of a number.				
	b)	Write down the number of iterations taken	L3	CO2	7 M	
		for the following numbers using bubble sort:				
		40 20 30 10.				

		UNIT-II			
3	a)	Write an algorithm to insert new node at the	L3	CO4	7 M
		beginning, at middle position and at the end			
		of a Singly Linked List.			
	b)	Write algorithms to perform the following	L3	CO4	7 M
		operations on a doubly linked list.			
		(i) Insert a node with data 'y' after a node			
		whose data is 'x'.			
		(ii) Delete a node whose data is 's'.			
		(iii) Insert a node with data 'a' as the 1st			
		node of the list.			
	T	OR			
4	a)	Compare singly and circular linked list	L4	CO4	7 M
		while performing insertion and deletion			
		operations.			
	b)	What are the draw backs of single linked	L2	CO3	7 M
		list? Explain how to implement insert and			
		traverse operations in circular linked list.			
	I .	UNIT-III		T T	
5	a)	Write a C function or algorithm to convert	L3	CO3	7 M
		the given infix expression to postfix			
		expression and solve the following			
		expression a+b*c^d/e^f-g using stacks.			
	b)	Write a program to implement queue using	L3	CO3	7 M
		array.			
		OR	F <u>_</u>	I I	
6	a)	Write a program to implement stacks using	L3	CO3	7 M
		array.			

	I	T		1				
	b)	Explain the implementation of circular	L3	CO3	7 M			
		queue using array. How an "empty queue"						
		is distinguished from a "full queue"? Write						
		necessary functions to perform all valid						
		operations on circular queue.						
UNIT-IV								
7	a)	Assume a binary tree has seven nodes.	L3	CO3	7 M			
		Write down the Preorder and Postorder						
		traversal of the tree with diagram. Also						
		write its algorithms.						
	b)	What is a binary search tree? Write an	L3	CO3	7 M			
		algorithm for inserting and deleting a node						
		in a binary search tree.						
OR								
8	a)	Explain the process of displaying the nodes	L4	CO4	7 M			
		of a binary tree at a particular level.						
	b)	Create binary search tree for the following	L3	CO3	7 M			
		elements (23, 12, 45, 36, 5, 15, 39, 2, 19).						
		Discuss about the height of the above binary						
		search tree.						
	•							
		UNIT-V						
9	a)	Write an algorithm for Breadth first search	L3	CO3	7 M			
		with an example graph.						
	b)	Explain about the Prim's algorithm with an	L2	CO1	7 M			
		example.						
OR								

10	a)	Explain about Depth First Search with	L2	CO1	7 M
		suitable example.			
	b)	Write an algorithm for minimum cost	L3	CO3	7 M
		spanning tree using Kruskal's algorithm.			